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Syllabus

41 Lectures, 50 minutes each

1. Wed. Aug 22, 2012, Fundamentals of Mechanics

Reading: Ruina and Pratap Chapter 1

1. Space, time and mass
2. Force, Free Body Diagrams (FBDs), action and re-action
3. The three Pillars:

(a) Constitutive Laws e.g., F D kx

(b) Geometry e.g., a D d2x=dt2;*a D d2*r=dt2

(c) Laws of mechanics: Linear and angular momentum, Energy

*The single homework problem associated with this lecture (however loosely) is Homework
problem 1. Due Wednesday August 29

2. Fri. Aug. 24, Particle Mechanics

1. Linear Momentum Balance:
*

F D m*
a

2.
*

F D m*
a with

*

F D *

f .*r;*v; t /

3. Set up eqns. from FBD
4. Separate into 1st order eqns
5. Numerical Soln. e.g., Euler’s method
6. Example: Cannon ball with gravity and quadratic drag.

1. Special cases

(a) F D �kr
(b) F D �c=r2 ( e.g., c D GmM )

*Homework problem 2 due Wed Sept 5.
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3. Monday Aug 27. Theorems for motion of a single particle

1. Balance and Conservation of linear and angular momentum
2. Work and energy (Power and rate of change of energy)
3. Conservative forces. All of these things are equivalent for a force that depends on

position in some region of interest,
*

F D *

F .*r/ (and not if
*

F D *

F .t/;
*

F D *

F .*v/;
*

F D
*

F .*r;*v; t / etc.)

(a)
*

F is conservative
(b) In the whole region (

*r is sometimes written r)
*r � *

F D*

0.
(c) For all closed pathsI

dW �
I

*

F � d*r D 0.

(d) Work is independent of path for all paths between A and B, for all points A and
B:Z B

A

dW �
Z B

A

*

F � d*r is path independent.

(e) A potential V exists so that
*

F D �*rV .
Notation: in this class we use V D EP. V is only determined up to an additive
constant.

(f) A unique potential V.*r/ exists so that

V.*r/ D
Z *

r

C

dW D
Z *

r

C

*

F � d*r 0

for any reference point A, fixed once and for all, and any path(s) from A. Choos-
ing a different reference point only changes V by an additive constant.

Any of the things in the list above implies all of the others. The Wikipedia page on
Conservative Forces is decent.

4. Examples

(a)
*

F D �mg Ok ) EP D mgz (near earth gravity)
(b)

*

F D �k*r ) EP D kr2=2 (important for vibrations, the canonical example)
(c)

*

F D �GmM*
r=r3 ) EP D �GmM=r (inverse square gravity)

(d)
*

F D �c*v is not conservative
(e)

*

F D �cv*v is not conservative
(f)

*

F D F0 sin.!t/O{ is not conservative

*Homework problems 3 and 4. Due Wednesday Sept 5.

4. Wed. Aug 29. Integration methods. Intro to central force motion

1. Euler’s method vs midpoint method: truncation (method) errors and roundoff errors.
This www page has a decent write up, although it doesn’t acknowledge the random
cancellation, thus

p
n, aspect of roundoff error.

2. Ease of setting up and integrating eqs of motion for any force on one particle.
3. Central Force motion: Assume

*

F D F Oer . Numerical examples for F D �GmM=r2

and F D �kr .
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4. Equal areas in equal times (Newton’s proof). See lecture 2 of Feynman’s Messenger
Lectures at Cornell where he reproduces Newton’s derivation Youtube (starting 14
minutes in).

*Homework problem 5. Due Wed. Sept 5.

5. Fri. Aug. 31. Central Force Motion (cont’d). Mechanics with many
particles.

1. Theorems for central force motion

(a) Angular momentum
(b) Power, work and energy
(c) apogee, perigee and circular orbits

2. Systems of many particles

(a) Internal vs external forces
(b) Pairwise equal and opposite forces, and why that is not always reasonable

*Homework problems 6 and 7. Due Wed. Sept 12.

6. Wed. Sept 5. Mechanics with many particles (cont’d).

Reading: Ruina and Pratap chapters 9, 11 and 12. Greenwood, Intermediate Dynamics,
Sections 4.1-4.3.

1. Center of Mass: *
rGmtot D

P
mi

*
ri

2. Momentum
*

L D mtot
*
rG

3. Angular momentum:
*

H=C D
*

HG=C C
*

H=G

4. Power, work and energy (partially in Homework).

*Homework problem 8. Due Wed. Sept 12.

7. Fri. Sept 7. Mechanics with many particles (cont’d).

1. LMB using center of mass
2. AMB using center of mass
3. Numerical example using ODE23: Two masses and a spring.

*Homework problem 9. Due Wed. Sept 19.

8. Mon. Sept 10. Astronauts and constraints.

1. Skylab shows that with no external forces an astronaut can rotate with zero angular
momentum, but cannot translate.

2. The simplest constraint example: 1D, 2-masses connected by a rod with a force on
one of them.

3. Approaches to constraints:

(a) I. Don’t use them: write equations with the higher DOF system and approxi-
mately enforce the constraint with springs and/or dampers as connections.
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(b) II.1 Write DAEs (Differential Algebraic Equations) and solve for constraint
forces with accelerations

(c) II.2 Manipulate the DAEs to eliminate constraint forces and reduce the order
of the equations.

(d) II.3 Finesse constraint forces by special equations of motion that don’t contain
them.

Here is one good cat video. Also see more analytic discussion, with some other rotary
locomotion puzzles in this discussion starting at minute 20:32.

*Homework problem 10. Due Wed. Sept 19.

9. Wed Sept 12. Constraints (2 masses, cont’d).

1. Using methods I and II.1-3 with two masses connected by a rod. Including various
methods for II.3, including:

(a) Find appropriate momentum (or angular momentum) equations that do not
contain the constraint forces and do not involve degrees of freedom that are
constrained out (e.g., system LMB using COM position as the configuration
variable).

(b) Energy conservation (EK CEP D Constant), works for 1 DOF systems
(c) Power balance (Ptot D PEK), works for 1 DOF systems
(d) Lagrange equations:

@L
@x

� dt

dt

�
@L
@ Px
�
D 0;

where
L D EK �EP D L.x; Px/ .D “T � V ”/:

2. Simple pendulum.

*No Homework

10. Fri. Sept 14. Constraints & Simple pendulum (Cont’d)

A point mass is connect to a string/rod. Some of the various methods to get to equations
of motion are enumerated

I. Hang the mass from a spring with rest length `0 and high spring constant k.
II.1 Write out all DAEs and

*

F D m*
a and

d2

dt t

�
x2 C y2 D `20

	
)

2
4 m 0 x=`0

0 m y=`0
x=`0 y=`0 0

3
5

� �� �� �� ��
M J

J 0 0

�

2
4 Rx

Ry
T

3
5 D

2
4 0

mg

�. Px2 C Py2/=`0

3
5

The first two equations are
*

F D m*
a and the third can be interpreted as ‘the radial

component of acceleration is the centripetal acceleration’.
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II.2: The first two equations (in the array above) can be manipulated to eliminate T and
x2 C y2 D `20 (with it’s first and second derivatives) can be used to eliminate y; Py
and Ry.

II.3 Finessing use of the constraint by measuring all motions with minimal coordinates
(in this case, for example, � or x) and using equations of motion that do not involve
the constraints. For example:

1. AMB=0,
2. fLMBg� Oe

�
,

3. *
r�fLMBg,

4. PEtot D 0,
5. P D PEK.
6. Lagrange equations

@L
@�

� dt

dt

�
@L
@ P�

�
D 0 where L D m

�
`0
P�
�2

=2Cmg cos �

Note that within general methods one has to choose coordinates (e.g., x or �) and
make other choices as well (e.g., whether or not to substitute in `0 for x2Cy2 where those
expressions appear).

*Homework problems 11, 12 and 13. Due Wed. Sept 26.

11. Mon Sept 17. The ‘rigid-object’ constraint (2D)

1. Naive approach: For n particles

(a) Write
*

Fi D mi
*
ai , for the i D 1 : : : n particles ) 2n 2nd order ODEs (2 for

each particle.
(b) Imagine some pairs of the particles, i and j , are connected by massless rigid

rods with unknown tensions Tij . These unknown tensions appear in the ODEs
above.

(c) For each rod also write 2n� 3 algebraic kinematic constraint equations, setting
the lengths `ij of the rods to be fixed.

(d) For n particles in 2D you need 2n�3 rods. The constraints thus lower the system
from 2n degrees of freedom to the 3 degrees of freedom of a 2D rigid object (e.g.,
the position of one point and the angle of one bar, this is one parameterization
of the 3 DOFs of the pose of a 2D rigid object.

For the 3DOFs of a rigid object this approach uses 4n � 3 DAEs. It is thus a lot
of setup and a lot of numerical solution. On top of which the constraints may drift
apart in time. Almost no-one (exactly no-one?) does the mechanics of rigid objects
this way.

2. Use the rigid object constraint and finesse the constraint equations: rotations of a
rigid object. Thus we need to think about rotations (� , ! D P� , R� D P!, *! D ! Ok) and
coordinate systems, including rotating coordinate systems (B; x0; y0; O{0; O|0).
Reading: Ruina/Pratap 14.1,14.2, 15.1, 15.2

*Homework problem 14. Due Wed. Sept 26.
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12. Wed Sept 19. The ‘rigid-object’ constraint (2D), cont’d.

Derivation of P*
H=G D IG! Ok

Read Ruina/Pratap sections 15.3, 15.4, 16.1, 16.2, 17.1, 17.2. Homework problem 15 due
Wed Oct 3.

13. Fri Sept 21. Movie.

Angular momentum and non-holonomic constraints
(Andy Ruina at Dynamic Walking 2010)

14. Mon Sept 24. Rigid body example: The compound or physical pen-
dulum.

Deriving
R� D � mgd

I Cmd2
sin �

In class quiz questions:

1. Is the reaction force on the rod from the hinge along the rod? more vertical? more
horizontal? totally vertical? totally horizontal?

2. If a point mass was added at the center of mass would the pendulum speed up? slow
down? oscillate at the same frequency?

15. Wed Sept 26. Rigid body example: Chaplygen Sleigh

Consideration of modeling wheels and casters. Derivation of governing equations

fLMBg � Oet ) Pv D d P�2�
AMB=C

	 � Ok ) R� D � md

I Cmd2
v P�

(Derivation on page 7 of Ruina, Non-Holonomic Stability Aspects of blah blah blah)

Homework problems 16 and 17 due Wed Oct 3.

16. Fri Sept 27. Chaplygen Sleigh (cont’d)

The complete governing equations were found. Also the equations linearized about the
zero-rotation constant velocity solution. Features of the equations were discussed.

Quiz question: How many degrees of freedom? Answer 3 configuration degrees of
freedom and 2 velocity degrees of freedom 3 > 2 ) non-holonomic.

No new homework for this lecture (related problem assigned with previous lecture).
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17. Mon Oct 1. Matlab, Friction and Double Pendulum intro.

1. Matlab, 3 examples shown in lecture (also posted on course www page):

(a) How to use ODESET to set ‘abstol’ and ‘reltol’
(b) How to use ‘events’ to stop integration when something happens before the end

of span.
(c) How to do animations of simple line drawings

2. Friction: Coulombs law: a curve on a plane and the friction cone (see Ruina/Pratap
section 4.3 and Appendix B.

3. Setup of the double pendulum equations of motion using angular momentum balance.

18. Wed Oct 3. Double pendulum continued.

1. review of setup using angular momentum balance
2. getting the equations onto a computer for simulation.

HW problem 18 and 19 due Wed Oct 10.

19. Fri Oct 5. Double Pend (dont’d), Mathie Equation

1. Consider still the double pendulum with shoulder at 0 and elbow at E. As before,
the upper arm OG1E is object 1 and the forearm EG2 is object 2.

(a) First option. Last class we used AMB=0 for the system and AMB=E for the
fore-arm. We then set out to calculate all positions, velocities and accelerations
in the expression for P*

H
=0

and P*
H
=E

in terms of �1 and �2 and their derivatives

( P�1; R�1; P�2; R�2). To do this we used *
!1 D P�1 Ok and expressions based on *

! �*
r

and P*! �*
r. The alternative approach is to write the positions of all points in

terms of the �s and to merely differentiate. For example:

*
vG1

D d

dt

*
rG1

D d

dt
fd1 cos �1 O{C d1 sin �1 O|g D �.d1 sin �1/ P�1 O{C d1.cos �1/ P�1 O|:

Accelerations can be found likewise. The net result, when all is reduced, is the
same set of equations as before.

(b) Eqns for each object, manipulated to eliminate constraint forces. If
we break the arm into two links we can write linear momentum balance for each
and also angular momentum balance for each. This is 6 equations total. They
include the 4 constraint force components from the force at the shoulder

*

R0

(2) and elbow
*

FE (2). By adding and subtracting these equations appropriately
we can try to eliminate the constraint forces. However this is just what we did
already using angular momentum balance about appropriate points. That is,
calling, for example linear momentum balance for system 1, LMB1 we have,
taking cross products of both sides of the equations:

AMB12=0 D*
rG1=0

� LMB1 CAMB1=G1
C*
rG2=0

� LMB2 CAMB2=G2

and
AMB2=E D*

rG2=E
� LMB2 CAMB2=G2
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That is, the two minimal equations from last lecture are just linear combinations
of the 6 equation of linear and angular momentum balance of the two indepen-
dent objects. The objects are not really independent, however, because we use
the constraints (that they are jointed together) when calculating the velocities
and accelerations in terms of minimal coordinates.

2. Mathieu Equation. Imagine an inverted pendulum, tipped an angle � from the
vertical. The base at 0 has some given vertical upwards acceleration a0.t/. By taking
AMB=0 we find (you should all be able to get here on your own in a couple of minutes):

R� D m.g C a.t// d

I Cmd2
sin �

That is, the acceleration is the same as if it was a still pendulum and gravity had
been altered. It is a general theorem in mechanics that the equations are the same if

(a) You put the whole system in an accelerating frame (which adds, say *
a to all

accelerations, or
(b) You add a body force at the center of mass of every object in a fixed direction

and with size proportional to mass which adds, say, a body force �*am to each
mass.

It’s easy to prove. Try it. Einstein elevated this to a fundamental postulate in his
development of general relativity, so I’ve heard.

On the computer we find that for an oscillating a.t/ a pendulum can be stabilized
when it is upright. The physical demo in the lecture also showed this. A hard
challenge is to make intuitive sense of this. It was a puzzle for me for about 25 years
then I heard an explanation from Mark Levi (mathematician at Penn State). Then,
last year, I thought of two more. Can you make sense of it?

20. Wed Oct 10. Five term acceleration formula review.

The only explicit review request was for derivation of, and explanation of, the “five term
acceleration formula” and it’s relation to “the Q-dot” formula (the so-called transport
theorem. Read about these in Ruina/Pratap sections 17.2-4.

HW problem 20 due Wed Oct 24.

21. Fri Oct 12 . Comments on inverted pendulum with inverted base +
intro to vibrations.

1. Intuitions about stability of Mathieu equation. Try to understand why vertical
oscillations of the base cause a net alignment force. In all cases we have

R� D g C ab

`
sin �

where ab is the vertical acceleration of the base. The first thing to notice is that is
that if g C ab > 0 for all time then if the pendulum starts with � > 0 and P� > 0

that � is monotonically increasing. So stability of the inverted pendulum depends
on ab < �g for at least parts of the motion; the downwards acceleration of the base
needs to be bigger than g at least some times.
Given that, for simplicity lets look at the alignment force when there is base shaking
but no gravity. Here are three intuitive explanations, in brief:
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(a) Replace the oscillating base with an oscillating gravity. This would cause slight
oscillations of the mass. But when the mass is lower in that oscillation cycle the
force is upwards and more tangent to the circle of motion than when the mass
is higher. Thus there is a righting torque.

(b) Look at the motions as the bar, a ‘two-force-member’ pushes and pulls on the
mass. When it pushes is at the low point in the base motion, and the bar is
more vertical. Thus the average of the pushing and pulling has a component
upwards along the circle.

(c) Imagine the mass is pushed and pulled up and down a track shaped like a tractrix
(pursuit) curve. The bar force is always tangent to that track. A centrifugal
force from the track fights the centripetal acceleration of the mass moving on
a curved track. But the track isn’t there and the missing force is an alignment
force.

2. You should review 1DOF oscillations

Homework: Read/review/learn Inman chapters 1-2 and Ruina/Pratap sections 10.1-
2. More or less this means: know and/or be able to derive the formulas on the inside
cover of Inman. The key bits of freshman math that you need to use are:

� D �c �
p
c2 � 4km

2m
(the quadratic formula)

ei� D cos � C i sin � (the Euler formula)
cos.b � a/ D cos a cos b C sin a sin b (addition formula for cosines)

.b � a/ D cos a sin b � sin a cos b (addition formula for sines)

21.Mon Oct 15 . Introduction to .

The main thing is solution of this ‘forced, damped oscillator’ equation

m Rx C c Px C kx D f .t/

especially for
f .t/ D F0 sin!0t; (sinusoidal forcing)

but also (chapter 3 of Inman) for a delta function, a Heaviside function, and an arbitrary
function (using convolution).

First off is numerical solution, which is straightforward by writing the 2nd order gov-
erning equation as a pair of 1st order ODEs:

Px D v

Pv D �cv � kx C F0 sin!0t
m

:

With these you can find the solution with any initial conditions x0; v0. As shown in class
you can see underdamped motion, over damped motion, resonance, etc.
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For analytic solution of the motion the key things are the homogeneous xh and partic-
ular xp solutions:

xh D Ae�!n�t sin.!d t C �/ (transient response)
xp D X sin.!0t C �/ (steady state response)

In terms of m; c; k; F0 and !0 the constants above are:

!n D
p
k=m (undamped natural frequency)

r D !0=!n (ratio of forcing to undamped natural frequencies)

ccr D 2
p
km (critical damping, if c D ccr the p is zero)

� D c=ccr D c=.2
p
km/ (damping ratio)

!d D !n

q
1 � �2 (damped natural frequency)

� (Phase. For xh this depends on ICs.)

� D tan�1
�
2�r=.1 � r2/

�
( phase for xp)

X D F0=kp
.1 � r2/2 C .2�r/2

(Amplitude of steady state response.)

!max D !n

q
1 � 2�2 (max response is when !0 D !max)

Mostly we are interested in underdamped motions, possibly with � � 1. Then:

1. The damped natural frequency !d and the peak in the response curve !max are both
close to the undamped natural frequency !n.

2. For low frequency forcing the motion is nearly in phase with the forcing: r �
1 ) � � 0. For high frequency forcing the motion is nearly out of phase with
the forcing: r � 1 ) � � � .

Homework 21 and 22 due Wednesday Oct 24.

22.Wed Oct 17 . Introduction to normal modes.

For now consider linear systems with 2 or more degrees of freedom and no damping. The
governing equation is:

M R*x CK*
x D*

0

where
*
x is a list of n minimal coordinates, say the positions of masses;
M is an n � n mass matrix. It is symmetric and positive definite;
K is an n � n stiffness matrix. It is symmetric and positive semidefinite.

Solving this numerically is easy enough by using this set of 2n first order ODEs:

P*x D*
v

P*v D �M�1K*
x (or equivalent using backslash in Matlab)

Thus, given parameters and initial conditions it is easy enough to find the motions.
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We solve this analytically by making the guess that

*
x D ei!t*u

where u is a constant vector and ! is a constant number. Plugging this guess into the
governing ODEs we get:

�!2M*uei!t CK*uei!t D*

0

) �!2M*u CK*u D*

0

) �!2M�1M*u CM�1K*u D*

0

) �M�1K � !2I �*u D*

0:

This is of the form of a standard eigenvalue problem: �A � �I �*v D *

0. Even though M

and K are symmetric there is no reason to think that M�1K is symmetric. And it usually
isn’t. Nonetheless, we live in a friendly universe and M�1K will be found to have n linearly
independent eigenvectors and n eigenvalues. Not only that, the eigenvalues turn out to be
positive, so the !s, the square roots of the eigenvalues, are real.

Because both real and imaginary parts are real solutions. The most general solution
we can construct with our guess is;

*
x.t/ D

nX
i

�Ai cos!i t C Bi sin!i t �
*u i :

There are enough free constants here to satisfy any initial conditions *
x0, P*x0 so this is the

general solution.
Thus, the general solution is a sum of ‘normal mode’ vibrations. For each mode, all

parts (all components of *
x) move synchronously.

Reading: Inman chapter 4.
Homework 23, 24 due Wednesday Oct 24.

22. Fri. Oct 19 . Normal modes cont’d.

The collection of mode shapes (eigenvectors *u i of M�1K) can be stored in a matrix P .
Each column of P is an eigenvector of M�1K. The eigenvalues !2

i can be stored as the diag-
onal elements of a square matrix D. We can find P and D with the single Matlab command

[P D] = eig( M^(-1)*K ) ; % type >>help eig.

If, say, initial conditions are given as *
x.0/ D *

x0 and *
v.0/ D *

0 then we can find the
coefficients

*

A D

2
664

A1

A2

A3

etc

3
775

by solving *
x0 D P

*

A for
*

A using the Matlab command:

A = P\x0; % type >>help \ .
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Thus we can put together the solution as a sum of normal modes. Example code was
shown in lecture and the solution compared with direct integration of the ODEs.

Some things to note:

1. The columns of P (the eigenvectors *u i of M�1K are generally not orthogonal.
2. The normal modes are simple synchronous oscillations, but the superposition of them

can be wild and chaotic looking (but they are technically not ‘chaotic’). They are
‘quasi-periodic’, meaning that all positions as functions of time are a sum of periodic
functions (namely sine waves for linear vibrations).

3. This method, using M�1K is downgraded by most professionals, including Inman,
because it doesn’t let you use reasoning associated with symmetric matrices (note
that M�1K is not symmetric).

4. The ‘professional’ method is based on a change of variables using the square root
M 1=2 of the mass matrix (coming lectures).

Reading: Inman chapter 4.
Homework 25 and 26 due Wednesday Oct 31.

23. Mon. Oct 22. Personal introspective contemplation of mechanics.

No class due to, say, communication difficulties. )�
:

24. Wed. Oct 24. Normal modes cont’d.

Various things

1. M and K don’t always come out symmetric from the equations of motion. But
they can always be made symmetric by adding and subtracting rows (adding and
subtracting equations).

2. M is always positive definite: 2EP D x0Mx > 0 for x ¤ 0.
3. K is always positive semi-definite: 2EP D x0Kx � 0 for x ¤ 0. The cases for which

non-zero deformations (x ¤ 0) give no energy are motions where no springs are
stretched or compressed.

4. The directions for which Ku D 0 are eigenvectors of M�1K giving vibration fre-
quencies of zero. For those mode shapes you need to use x D .AC Bt/u instead of
x D .A sin!i tCB cos!i t /u. This requires the use of an IF statement when summing
normal modes to get a general solution.

5. If we make the change of coordinates q DM 1=2x then the governing vibration equa-
tion turns to

Rq CM�1=2KM�1=2q D 0:

The eigenvectors vi of M�1=2KM�1=2 are (or can be taken to be) ortho-normal.
Read about this official approach to vibrations in Inman 4.1-4 and Ruina/Pratap
10.3.

Homework 27 and 28 due Wednesday Oct 31.

25. Fri. Oct 26, Normal modes cont’d.

How to get the matrices in K and M in M Rx C Kx D 0? Linearize non-linear ODES, or
truncate LE to quadratic order, or ad hoc linearization (e.g. double pendulum example).
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26. Mon Oct 29. Normal modes cont’d.

Normal modes and q coordinates: Rq C QKq D 0 ) separated equations for modal
coordinates: Rri C !2

i r D 0. In a normal mode vibration each mass feels itself to be a

harmonic oscillator with the same frequency. Thus each mass must have the same
�
k
m

�eff
.

27. Wed. Oct 31. Normal modes cont’d.

Example with three masses in a line. Introduction to stiffness matrix for 2D structures: a
single spring with a mass at each end.

28. Fri. Nov 2. Normal modes cont’d.

Filling in the structural stiffness matrix (using the k matrix from a single spring).

29. Mon Nov 5. Normal modes cont’d.

Example, a triangle floating in 2D space.

30. Wed. Nov 7. Normal modes cont’d.

Review of HW. Introduction to damping: Pz D Az with A being a constant matrix.

31. Fri. Nov 9. Normal modes cont’d.

eAt .

32. Mon. Nov 12. Normal modes cont’d.

Numerical experiments comparing ODE45 versus eAt versus superposition of complex e-
vector solutions.

33. Wed. Nov 14. Normal modes cont’d.

Numerical experiments comparing ODE45 versus eAt versus superposition of complex e-
vector solutions.

34. Fri Nov 16. Forcing of multi-DOF systems.

Modal equations and modal forcing.

35. Mon. Nov 19. Wave equation.

Derivation of wave equation for strings and rods.

36. Wed. Nov 21. String (cont’d)

Wave equation: separation of variables, model solutions, harmonics, music theory.
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37. Mon. Nov 26. Approximate normal mode for wave equation

Assume a modal shape f .x/. Assume u.x; t/ D Bf .x/g.t/. Then calculate EK and EP.
Then use either Lagrange Equations or Conservation of energy to get ODE for g.t/: Rg C
!2
ng D 0. Thus !n (which depends on the guessed shape) an estimate of a natural frequency

has been found.
Empirical fact: In 1D, 2D and 3D, for discrete and for continuous systems, if you

guess a modal shape that satisfies all BCs and looks reasonably smooth, the prediction of
modal frequency !n is often quite accurate.

Example: Vibrations of a string of length L Ru D c2u00 with u.0; t/ D u.L; t/ D 0. Using
separation of variables we found the lowest mode (the fundamental, the zeroth harmonic)
was, exactly.

u.x; t/ D

0
B@A cos.�ct=L/C Bsin.�ct=L����

!nt

/

1
CA sin.�x=L/:

Now, with the guess that f .x/ D x.L�x/, instead of the exact sin.�x=L/, we turn the crank
and find !n D

p
10 c=L instead of the exact, from separation of variables, !n D �c=L.

Note that sqrt10=� � 1:007 (less than 1% error).

38. Wed. Nov 28. Vibration isolation.

A quick introduction.

39. Fri. Nov 30. Guest lecture: Richard Rand

Coupled oscillators.
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Homework problems

1. Euler’s method. If needed, review Euler’s method of numerical solution of ordinary
differential equations (ODEs) in your ODE text or from the WWW. Consider the
differential equation Px D x with initial conditions x0 D 1 solved over the interval
0 � t � 1. In all cases write your own code and do not use any Matlab ODE solvers.

(a) Use any time step you like to calculate x.1/ and check that the result is reason-
ably close to e � 2:718281828::: .

(b) Solve the equation many times using time steps of h D 10�n there n = 0, 1, 2,
... as high as your computer and patience will allow. [hint: for large values of n
storing intermediate values in the calculation is time consuming. And if you do
store intermediate values, initialize variables with code like:

x = zeros(1,10^n).

Note that large n will take much time in any case.
(c) Plot the error vs n on a log-log plot.
(d) For what value of n is the error smallest?
(e) Can you rationalize that result?
(f) If you did not know the analytic result, how could you determine the optimal

value of n for the most accurate solution?

2. Canon ball. A cannon ball m is launched at angle � and speed v0. It is acted on
by gravity g and a viscous drag with magnitude jcvj.
(a) Find position vs time analytically.
(b) Find a numerical solution using � D �=4, v0 D 1m=s, g D 1m=s2, m D 1 kg.

Use Euler’s method programmed by you.
(c) Compare the numeric and analytic solutions. At t D 2 how big is the error?

How does the error depend on step size?
(d) Use larger and larger values of v0 and for each trajectory choose a time interval

so the canon at least gets back to the ground. Plot the trajectories (using equal
scale for the x and y axis. As v ! 1 what is the eventual shape? [Hint: the
answer is simple and interesting.]

(e) For any given v0 there is a best launch angle �� for maximizing the range. As
v0 !1 to what angle does �� tend? Justify your answer as best you can with
careful numerics, analytical work, or both.

3. Mass hanging from spring. Consider a point mass hanging from a zero-rest-length
linear spring in a constant gravitational field.

(a) Set up equations. Set up for numerical solution. Plot 2D projection of 3D
trajectories.

(b) By playing around with initial conditions, find the most wild motion you can
find. Make one or more revealing plots. [Hint: Make sure the features you
observe are properties of the system and not due to numerical errors. That is,
check that the features do not change when the numerics is refined.]

(c) Using analytical methods justify your answer to part (b).
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4. What means “rate of change of angular momentum”? Consider a moving
particle P. Consider also a moving point C (moving relative to a Newtonian frame F
that has an origin 0). For which of these definitions of

*

H =C Is the following equation
of motion true (that is, consistent with

*

F D m*
a)?

*

MC D P*
H=C

In each case say whether the definition works i) in general, or ii) for some special
cases concerning the motions of P and C that you name.

(a)
*

H=C D*
rP=C0 �*

vP=0m,
where C’ is a point fixed in F that instantaneously coincides with C.

(b)
*

H=C D*
rP=C �*

vP=0m.

(c)
*

H=C D*
rP=C �*

vP=Cm.

That is, for each possible definition of
*

H =C you need to calculate P*
H=C by differenti-

ation and see if and when you get *
rP=C �*

a
P=F .

5. Periodic motions for a central force. By numerical experiments, and trial and
error, try to find a period motion that is neither circular nor a straight line for some
central force besides F D �kr or F D �GmM=r2. In your failed searches, before
you find a periodic motion, do the motions always have regular patterns or are they
sometimes chaotic looking (include some pretty pictures)?

6. Mechanics of two or more particles

(a) For two particles with mass m1 and m2 what is the period of circular motion if
the distance between the particles is d and the only force is the force between
them, F D Gm1m2=r

2?
(b) Pick numbers for G;m1; m2 and r and, using appropriate initial conditions, test

your analytical result with a numerical simulation. Make any plots needed to
make your result convincing.

(c) For three equal particles, m1 D m2 D m3 D 1 and G D 1 what is the angular
speed for circular motion on a circle with diameter of d D 1?

(d) Check your result with a numerical simulation.

7. Montgomery’s eight. (From Ruina/Pratap). Three equal masses, say m D 1,
are attracted by an inverse-square gravity law with G D 1. That is, each mass is
attracted to the other by F D Gm1m2=r

2 where r is the distance between them. Use
these unusual and special initial positions:

.x1; y1/ D .�0:97000436; 0:24308753/
.x2; y2/ D .�x1;�y1/
.x3; y3/ D .0; 0/

and initial velocities

.vx3; vy3/ D .0:93240737; 0:86473146/

.vx1; vy1/ D �.vx3; vy3/=2
.vx2; vy2/ D �.vx3; vy3/=2:
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For each of the problems below show accurate computer plots and explain any cu-
riosities.

(a) Use computer integration to find and plot the motions of the particles. Plot
each with a different color. Run the program for 2.1 time units.

(b) Same as above, but run for 10 time units.
(c) Same as above, but change the initial conditions slightly.
(d) Same as above, but change the initial conditions more and run for a much longer

time.

8. Konig’s Theorem The total kinetic energy of a system of particles is

EK D
1

2

X
miv

2
i :

(a) Derive an expression of this form

EK D
1

2
mtotv

2
G C :::you fill in the rest::::

(b) Is it always true that

�X
*

F ext
�
�*vG D

d

dt

�
1

2
mtotv

2
G

�
�

Defend your answer with unassailable clear reasoning (that is, a proof or a
counter-example).

(c) Is it always true that the power of internal forces is equal to the rate of change
of the quantity you filled in in part (a) above? Provide a proof or a counter-
example. (A good solution is expected from those in 5735).

9. Two masses This problem has 3 independent educational goals:

(a) Introduction to ODE23. Towards that end you should study the lecture example
until you can write it yourself without looking at any reference.

(b) Introduce the simplest of a class of vibrations problems you should master. At
this point it is mastery of derivation of the equations. You should check that
you can reproduce the lecture example with no sign errors without looking up
anything.

(c) Motivate the use of kinematic constraints.

Two masses m1 and m2 are constrained to move frictionlessly on the x axis. Initially
they are stationary at positions x1.0/ D 0 and x2.0/ D `0. They are connected with
a linear spring with constant k and rest length `0. A force is applied to the second
mass. It is a step, or ‘Heaviside’ function

F.t/ D F0H.t/ D
(
0 if t < 0

F0 if t � 0

(a) Write code to calculate, plot and (optionally) animate the motions for arbitrary
values of the given constants.
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(b) Within numerical precision, should your numerical solution always have the
property that F D .m1 Cm2/aG where xG D .x1m1 C x2m2/=.m1 Cm2/? (As
always in this course, yes or no questions are not multiple choice, but need
justification that another student, one who got the opposite answer, would find
convincing. )

(c) Use your numerics to demonstrate that if k is large the motion of each mass is,
for time scales large compared to the oscillations, close to the center of mass
motion.

(d) 5735 only: Using analytic arguments, perhaps inspired by and buttressed with
numerical examples, make the following statement as precise as possible:

For high values of k the system nearly behaves like a single mass.

Of course, in detail, the system has 2 degrees of freedom (DOF). So you are
looking for a way to measure the extent to which the system is 1 DOF, and in
which conditions (for which extreme values of parameters and times) the system
is close to 1 DOF by that measure. There is not a simple single unique answer
to this question.

10. Two masses constrained This is an elaboration of the problem above, replacing
the two masses with a rigid rod. As per lecture, set up the DAEs and solve them using
Matlab using numbers of your choice. Note the increasing error (as time progresses)
in the satisfaction of the constraint. Compare this solution with the the method from
the problem above (where you use some very large value of k). Which one is faster?
more accurate in predicting COM motion?

11. Simple pendulum. Derive the simple pendulum equation R� C g
`

sin � D 0 as many
ways as you can without looking anything up in books. For example, in all cases
using polar coordinates,

(a) linear momentum and manipulate the equations to eliminate constraint force
(b) linear momentum, dot with Oe

�

(c) linear momentum, cross with *
r

(d) angular momentum
(e) conservation of energy
(f) power balance
(g) Lagrange equations

12. Pendulum numerics. Set up the pendulum in cartesian coordinates. Express
the constant length constraint as a set of linear equations restricting the accelera-
tion. Solve these (3 2nd order) DAE equations with numerical integration and initial
conditions and parameters of your choosing. No polar coordinates allowed. Quan-
titatively compare your solution with a solution of the simple pendulum equations
(For the comparison you need to either compute x from � or vice versa. Integrate
for a long enough time so you can detect drift away from satisfying the kinematic
constraint.

13. Pendulum with an awkward parameterization By any means you like, for
a simple pendulum find the equations of motion using y (horizontal position) as
your parameterization of the configuration. That is, find a 2nd order differential
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equation determining Ry in terms of y, Py and physical parameters (g;m; `). Using
numerics, quantitatively compare the solution of this ODE with a solution of the
simple pendulum equations (Note, you can assume the pendulum is hanging down,
hence x > 0. This problem is different from the DAE problem above in that you
should obtain a single 2nd order ODE, not a set of 3 equations.

14. 2D Dumbell. Two equal masses m D 1 are constrained by a rod to be a distance
` D 1 apart. At t D 0 they have equal and opposite velocities (v D 1) perpendicular
to the rod. Use a set of 3DAEs (

*

F D m*
a & the constraint equation .x2�x1/2C.y2�

y1/
2 D `2 with numerical integration to find the subsequent motion. Use plots and/or

animation to help debug your code. Using what you know about systems of particles
(e.g., momentum, angular momentum, constraint equation, energy) quantify as many
different numerical errors as you can.

15. What means “rate of change of angular momentum” for a SYSTEM of
particles? Consider a system of moving particles with moving center of mass at G.
Consider also a moving point C (moving relative to a Newtonian frame F that has an
origin 0). For which of these definitions of

*

H =C Is the following equation of motion
true (that is, consistent with

*

F D m*
a)?

*

MC D P*
H=C

In each case say whether the definition works i) in general, or ii) for some special
cases concerning the motions of P and C that you name.

(a)
*

H=C DP
*
ri=C0 �*

vi=C0mi ,
where C’ is a point fixed in F that instantaneously coincides with C.
(Hint: his definition is good one, always!)

(b)
*

H=C DP
*
ri=C �*

vi=0mi .
(This strange definition is used in the classic book by Housner and Hudson)

(c)
*

H=C DP
*
ri=C �*

vi=Cmi .
(Hint: this is the most important candidate definition, but it’s only good for
special kinds of C, namely: C = COM, C is fixed and ...)

That is, for each possible definition of
*

H =C you need to calculate P*
H=C by differentia-

tion and see if and when you get
P

*
ri=C �*

a
i=0

. If you are short for time just consider
cases (a) and (c) and note their agreement if C is stationary or if C=G.

16. Braking stability 2D, looking down. Consider the steering stability of a car going
straight ahead with either the front brakes locked or the rear brakes locked. The
steering is locked and straight ahead. For simplicity assume that the center of mass
is at ground height between the front and back wheels. Assume that the locked
wheels act the same as a single dragging point on the centerline of the car midway
between the wheels.

(a) Develop the equations of motion.

(b) Set them up for computer solution.

(c) For some reasonable parameters and initial conditions find the motion and make
informative plots that answer the question about steering stability. Note, in this
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problem where there is no steady state solution you have to make up a reasonable
definition of steering stability.

(d) See what analytical results you can get about the steering stability (as dependent
on the car geometry, mass distribution, the coefficient of friction and the car
speed). As much as you have time and interest, illustrate your results with
graphs and animations of numerical integrations.

(e) Hints. Check that your governing equations reduce to the lecture equations
when the friction is zero. Check special cases of the numerical solutions with
solutions you know other ways. A challenge is to think of as many of these as you
can (even if you don’t check all of them). That is, for some special parameter
values and/or initial conditions you know features of the solution (examples: 1)
no friction means energy is conserved 2) with friction and no initial rotation
rate slowing is with constant acceleration, etc).

17. Review. Spend 3 hours doing problems of your choice from Ruina/Pratap. Pick
problems at the edge of your confidence level. Make sure to draw clear free body
diagrams and to use clear problem setups and clear vector notation. Hand in your
work.

18. Review again. Again spend 3 hours doing problems of your choice from Ru-
ina/Pratap. Pick problems at the edge of your confidence level. Make sure to draw
clear free body diagrams and to use clear problem setups and clear vector notation.
Hand in your work.

19. Double pendulum Consider the double pendulum made with two bars. Hinges
are at the origin 0 and the elbow E. For definiteness (and so we can check solutions
against each other) both bars are uniform with the same length ` D 1 (in some
consistent unit system). g D 10. Neglect all friction and assume there are no joint
motors.

(a) Set up and numerically solve (there is no analytic solution) to the governing
equations that you find using AMB. You may refer to lecture notes, but you
should be able to do it on your own by the time you hand in the work. Assume
that at t D 0 the upper arm is horizontal, sticking to the right, and the fore-arm
is vertical up (like looking from the front at a driver using hand signals to signal
a right turn). Integrate until t D 10. Draw the (crazy) trajectory of the end of
the forearm.

(b) Use Lagrange equations to find the governing equations and, either by com-
paring equations or by comparing numerical solutions, show that the governing
equations are the same as those obtained using AMB.
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20. Mass in slot on turntable. A rigid turntable (mt ; It ) is free to rotate about a
hinge at it’s center. It has in it a straight frictionless slot that passes a distance d

from it’s center. A mass ms slides in the slot. For minimal coordinates use rotation
of the disk � from the position in which the slot is horizontal and below the disk
center, and the distance s the mass is from the point where the slot is closest to the
center of the disk.

(a) find the acceleration of the mass in terms of d; � P�; R�; s; Ps and Rs. Do this three
different ways and check that all give the same answer when reduced to x and
y coordinates.

i. Write the position of the mass in terms of d; � and s using base vectors O{
and O|. Differentiate twice.

ii. Write the position using O{0, which aligns with the slot, and O|0. Differentiate
twice using that PO{0 D *

! � O{0 D ! O|0 and PO|0 D �*
! � O|0 D �! O{0

iii. Use the five-term acceleration formula (using *
vrel D Ps O{0 and *

arel D Rs O{0).
(b) Using the most convenient expression above, find the equations of motion (That

is, find R� and Rs in terms of fixed parameters and position and velocity variables.).
One way to do this would be to use AMB for the whole system about the center
and to use fLMB for the massg�O{0.

(c) Assume ICs that s.0/ D 0; Ps.0/ D v0; �.0/ D 0 and P�.0/ D !0 > 0. As t ! 1
does � !1? (As for all questions, please explain in a way that would convince
a non-believer.)

Top view

x

y

21. Mass and spring vibration. The harmonically forced vibration of a damped
oscillator is given by this equation:

m Rx C c Px C kx D A cos!0t C B sin!0t

(a) Assume that the mass is connected to the spring and to the dashpot, the other
ends of which are at C and D, respectively. Define x as the displacement of the
mass in inertial space. For each of the cases below, find A and B. The latter
three cases are from excitation by a moving base.

i. C and D are fixed and a force F D F0 sin!0t acts on the mass.
ii. C is fixed and D oscillates with � D �0 sin!0t .
iii. D is fixed and C oscillates with � D �0 sin!0t .
iv. C and D oscillate together with � D �0 sin!0t .

(b) For the following problems, solve the governing equation above numerically us-
ing, say ODE45 using various appropriate forcings and initial conditions. For
definiteness use the underdamped case m D 1; c D 1; k D 1.
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i. Set A D 0; B D 0 and c D 0. Using numerics find the natural frequency !n.
Do this using ‘events’ (for the mass released from rest, find the time until the
velocity gets to zero from above). Then calculate the frequency from this
measure period. Compare the result with the analytic result !n D

p
k=m.

ii. Now set A D 0; B D 0 and c D 1 and find the damped natural frequency
!d . Compare this with the analytic result.

iii. Using ’events’ that do not terminate the integration, and using the logarith-
mic decrement method, find the damping ratio � (‘zeta’). Compare with
the analytic result.

iv. Draw a frequency response curve (each point on this curve requires a full
simulation). For example, use A or B = 0 and the other equal to 1 and look
at the amplitude of steady state response. The hard part here is running
the simulation long enough so that the response is ”steady state”. Compare
this curve with an analytically derived curve. Using the numerics, find, as
accurately as you can, the frequency at which the amplitude of the steady
state response is maximum.

v. Compare the three frequencies: 1) natural frequency, 2) damped natural
frequency and 3) ‘resonance’ frequency (frequency which gives maximum
amplitude response). Note their order and note how close, or not, they are
to each other.

22. Bead on parabolic wire For a frictionless point-mass bead sliding on a rigid wire
on the curve y D cx2 with gravity in the �y direction, find the equation of motion.

(a) Derive the equations of motion using Lagrange equations. Use, say the projec-
tion of the position on the x axis as the generalized coordinate.

(b) Derive the equations of motion using Newton’s laws. First write
*

F D m*
a with

an unknown constraint force orthogonal to the wire. Then dot both sides with
a vector tangent to the wire. You should get the same answer as for part (a)
with a very similar amount of algebra.

(c) Find the frequency of small vibrations (find a formula for this in terms of some
or all of m,g and c.

23. Three masses normal modes. Three equal masses are in a line between two rigid
walls. They are separated from each other and the walls by four equal springs.

(a) Write the equations of motion in matrix form.
(b) By guessing/intuition find one of the normal modes.
(c) Using the MATLAB eig function find all three normal modes.
(d) Using numerical integration, with masses released from rest with a normal mode

shape (*x0 D *u i ), show that you get normal mode (synchronous) oscillations.

24. Double Pendulum normal modes. Use your double pendulum solutions with the
following simplifications:

(a) both links have the same length `;
(b) all mass is in two equal point masses (one at the elbow, one at the hand), so

I1 D I2 D 0;
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(c) linearize: drop all terms that involve products like P�21 ; P�22 or P�21 . For both �s
replace sin � with � and cos � with 1.

Thus write the small amplitude double pendulum equations in this form:

M R*� CK
*

� D*

0:

Here,
*

� D ��1 �2�
0, and M and K are 2� 2 symmetric matrices whose entries are

expressions involving, m,g and `. Use the normal mode approach (e.g., the problem
above) to find the normal modes. Use one of these, with small amplitude, as as
initial conditions for your full non-linear simulator and show that you get (nearly)
synchronous motion.
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25. Normal modes, solving an IVP. (IVP = Initial Value Problem). For your three
mass system (above), find the motion if you are given initial positions and velocities.
In some special cases (including at least one normal mode shape) check your motion
against direct integration of the ODEs.

26. Rolling cylinder A uniform cylinder with mass m and radius r rolls without slip
inside a cylinder with radius R. Gravity g pulls it down.

(a) Are the full non-linear differential equations the same as those of a pendulum?
If so, or not, explain why this is expected.

(b) In terms of some or all of m; g; r and R find the frequency of small oscillation
near the bottom.

27. Cart and pendulum A cart m1 slides frictionlessly on a level surface. A massless
stick with length ` is hinged to it with a mass m2 at the end. Take � D 0 to be the
configuration when the pendulum is straight down. Use gravity g.

(a) Find the full non-linear governing equations at least two different ways and show
that they agree.

(b) Linearize the equations for small deviations from the configuration where the
pendulum hangs straight down.

(c) Write the equations in standard vibration form: M R*x CK*
x D*

0.

28. Normal Mode Numerics Much of this problem solution can be done by recycling
previous solutions. Given M;K; x0; v0 one can find x.t/ and v.t/ three ways.

(a) Write a matlab function SOLVENUM

[xmatrix] = solvenum(M,K,x0,v0,tspan);

The output is an array, each row of which are the values of x at the corresponding
time in span. Use ODE45 and any other functions you write.

(b) Write a matlab function SOLVEMODE

[xmatrix] = solvemode(M,K,x0,v0,tspan);

that solves the same problem by using eigenvectors of M�1K. Make sure your
function works even when K is indefinite (even when there are motions that
have no potential energy).

(c) Write a matlab function SOLVENORM

[xmatrix] = solvenorm(M,K,x0,v0,tspan);

that solves the same problem by using eigenvectors of M�1=2KM�1=2. Make
sure your function works even when K is indefinite (even when there are motions
that have no potential energy).

(d) Show that all three functions above give the same solution for the linearized
cart and pendulum.
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29. Cylinder in a pipe. . A thin-walled hollow cylinder with radius R and mass M

rolls without slip on level ground. Inside it rolls, without slip, a disk with radius
r < R and mass m. Gravity g points down. Find the equations of motion (two
ways if you have time and energy and would find it educational). Find the modes of
small oscillation and their frequencies. One of these should make clear intuitive sense.
Can you find at least one special case in which you can check the other? [For those
interested in such: can you find a conservation law associated with the translation
invariance of the governing equations? (There is one, but I don’t know what it is)]

30. Mass in slot on a turntable. 2D. A turntable with mass M and moment of inertia
I is held in place at its center with a bearing and a torsional spring kt . Along one
diameter of the disk is a slot in which a mass m slides with no friction. A zero-rest-
length spring pulls it to the center with spring constant k. Find the equations of
motion at least two different ways. Find the normal modes and frequencies.

31. Normal modes by inspection. For each of the systems below find as many normal
modes, and their frequencies, as you can without doing matrix calculations. Then,
if you like and can, check your work with matrix calculations.

(a) 1D. Three equal masses in a line connected by two springs. No springs are
connected to ground.

(b) 3D. Two unequal masses, m1 and m2, are at points *
r1 and *

r2 in 3D space and
are connected by one spring k. No springs are connected to ground.

(c) 2D. 4 point masses are arranged in a square. The 4 edges are equal massless
springs.

(d) A regular hexagon has equal point masses at the vertices and equal springs on
the edges. No springs are connected to ground. Just find one mode of vibration
that does not have zero frequency.

(e) 1D. An infinite line of equal point masses m is connected by an infinite line of
equal springs k. One normal mode oscillation is given by

*
v D �� � � � 1 1 � 1 1 � 1 : : : �0

with ! D 2
p
k=m. Find another mode and frequency. Challenge: find more.

[Hint 1: this problem has impenetrably beautiful simple solutions which you
might, with some luck, guess and, with some skill, check. Hint 2: If you assume
the solution is periodic with period n then the stiffness matrix can be written
as an n � n matrix. You can use this to numerically find normal modes which,
if you look at them (say, plot the vector components vs their indecies) should
reveal a pattern. Then you can use that same matrix to check if you detected
the pattern correctly. ]
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32. Intro to damped modes. Consider the set of ODEs

Pz D Az

where z is a list of scalar functions of time and A is a constant real matrix. Here you
are to test, in Matlab, the basic theory of the solutions of equations like this.

(a) Generate a fairly random n� n matrix A using RAND or any other way. You can
use any positive integer 3 � n � 100 that pleases you.

(b) Find any eigenvalue � and associated eigenvector v of A (these will undoubtedly
be complex).

(c) For a sequence of, say, 100 or 1000 times, starting at t D 0, plot the real part of
e�tv1 versus t , where v1 is the first component of the eigenvector. Pick a length
of time where the curve is variable enough to be interesting, but not so variable
that no details can be detected.

(d) Find the vector w which is the real part of v.
(e) Solve

Pz D Az

using ODE45 with the initial condition z0 D w. Plot z(1) vs t from this solution
and compare it with the plot above. If nothing pops out, someone made a
mistake. Explain the interesting relation as best you can.

33. Old Qualifying exams. Four documents on the course WWW page have old
qualifying exams. Pick a 2D dynamics problem from that set. This should be a
problem that you are challenged by. Take the poorly worded question and sloppy
figure and make a clear figure and clear question. Write up a clear solution. If this
takes less than 4 hours, do another and another until 4 hours are used up.
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34. Damped normal modes. Consider 3 equal masses in a line held between 2 walls by
4 equal springs. A single small dashpot (c D :1

p
mk) connects the leftmost mass from

the wall at its left. Assume the initial velocity is zero. Assume the initial position is
a mode shape with mass one having a displacement of 1. Plot position vs time for
the first mass for all three mode shapes. Comment on the similarity and differences
between the results for the three methods below. Make any other revealing plot(s)
you can think of.

(a) Numerical ODE solution (an arbitrarily exact numerical method).
(b) Solution using first order odes and the matrix exponential (an exact method,

numerically evaluated).
(c) Solution using modal damping:

i. Pick � and � so that C D �M C �K gives about the right decay rate for
the fastest and slowest modes (a numerically evaluated analytic expression
for the slightly wrong problem).

ii. Use the change of coordinates that reduces undamped problem to diagonal
form in terms of modal coordinates:

R*r C P 0M�1=2CM�1=2P� �� �
OC

P*r C�*
r D*

0:

Only if you are lucky is this OC diagonal (for example if C D �M C �K). If
it isn’t, which it isn’t for this HW problem, replace the OC matrix with the
diagonal part of OC . Then find the solution for each mode (A numerically
evaluated analytic solution to a more nearby problem).

35. a) Old Qualifying exam, 2nd try.
Observation: No honest student could say “Could do, but I won’t learn from this.”

i Pick a 2D dynamics Q-exam problem, hopefully one that is not trivial for you.
ii Don’t write on page backs. Staple this problem separate from your other HW.

Page 1: problem statement, Page 2: start of solution. No more than 3 pages
total.

iii This should not be a record of your brainstorming, it should be a clear write-up
of a solution. (Practice brainstorming. Just don’t show that here.)

iv State assumptions. Describe methods if the calculation is too long for details to
show. Name generalizations and how you could/would deal with them.

v Write in such a way that you will make a competent reader, say a TA or professor
in a course like this, think you are a clear thinker with mastery of the topic
and good communication skills. Meanwhile convince another imagined skeptical
member of this class that your solution is correct.

vi MAIN INITIAL GOAL: Reduce the problem to one or more precisely defined me-
chanics problems. State reasonable assumptions. Don’t need complete sentences.
Clear sentence fragments & shorthand ok.

vii SECONDARY GOAL: Use precise mechanics reasoning to solve, or set up solu-
tions.

viii THIRD GOAL: Describe why your solution does or does not make sense.

35. b,c,d,...) Same as (a).
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36. Rolling eccentric cylinder A cylinder with radius R has center of mass G offset
from the cylinder center C by a distance d < R. It has total mass M , radius R and
moment of inertia IG about it’s center of mass. It rolls without slip down a ramp
with slope  , propelled by gravity g.

(a) Find the equations of motion.
(b) Find the needed coefficient of friction to enforce the rolling constraint.
(c) After release from rest how far does it roll before it skips into the air.

It’s ok to use numerical solutions based on any non-trivial parameter choices. No
need for parameter sweeps.

Interesting extension if you have lots of time: With appropriate initial conditions,
this can roll on a level ramp then skip, then do about a full revolution in the air, then
land with no no relative velocity at impact (thus conserving energy) and continue
rolling and skipping. This is explained, somewhat, in a paper on Ruina’s www page:
“A collisional model ...” (figure 4). The calculation details are like those in this
paper “Persistent Passive Hopping ...”

37. Modal forcing This problem is interesting. Consider our favorite 3 mass system,
from problem 34 above: 3 equal masses in a line separated by 4 springs. Assume that
all springs are parallel to dampers with c D :1

p
mk. If you are short of time, leave

off the damping (use c D 0). Now consider this problem.

(a) The system starts from rest at t D 0.

(b) A force F D F0 sin.
q

2k
m
t / is applied to the left mass. You can think of this as a

small force if you like (although the words “small” and “large” have no meaning
in the solution of linear problems).

Now solve this problem various ways and notice some interesting features by making
relevant plots.

(a) Solve using your favorite Matlab ODE solver.
(b) Plot the positions of all three masses as a function of time. Make two plots: 1)

Use a long enough time scale so that you get a sense of steady state response;
2) Use a short enough time so you can see the amplitude growing.

(c) Use modal forcing for the mode *
v D �1 0 � 1�0. Note that for this diagonal-

izeable problem, the modal solution is exact.
(d) Make similar plots. Note that in this solution the middle mass does not move

at all.

Main question: Given that the modal solution is exact. And given that in that
modal solution the middle mass does not move. What makes the right mass move?

38. Write a final exam question. You should write a clear candidate final exam
question on one page. You should write a clear solution on the following page(s), 2
page max. Single sided (don’t write on backs). These 2 or 3 pages should be stapled
together separate from your other homework problems. Your question should not be
like that of anyone else you know. Hand printing and hand drawing are fine. Some
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of these will be scanned and posted before the final exam. At least one from the
scanned bunch, possibly slightly modified, will be on the final exam.

A good final exam question has these properties:

(a) The question is clear.
(b) Most of the people who could do it well in a relaxed 6 hours could do it decently

in just 30 minutes.
(c) Most people who mastered all the prerequisite course material, all of the course

homeworks, all the lecture material and all of the readings should be able to do
it.

(d) Most people who had the pre-requisite courses but didn’t take this course (or
its equivalent) should not be able to do it.

(e) Getting the problem right should be indicative of having (hopefully useful) skills
and knowledge related to this course. For example, asking “What did Professor
Ruina dress up as on Halloween?” might fulfill all of the requirements above,
but not this one.

(f) Not too many jokes in the problem statement or in the solution. If it’s too cute
people get annoyed.

(g) The solution should be maximally illuminating. With minimum reading effort,
someone who doesn’t know how to do the problem should learn and understand
how.

(h) One good type of problem would be of a type that you couldn’t do at the course
start, can do well now, and wish was on the final exam.

39. Final computation project. Due at the end of the semester. This is an extension
of the double pendulum homework. The minimal version is to simulate and animate
both a triple pendulum and also a 4-bar linkage. For the triple-pendulum the equa-
tions of motion should be found two different ways. In both problems the numerical
solutions should be checked as many ways as possible (Energy conservation, limiting
cases where simple-pendulum motion is expected, etc). Optional extras are a) to
simulate and animate more complicated mechanisms of your choice (e.g., 4,5, n link
pendulum or closed kinematic loop) and b) to find periodic motions.

Deliverables:

(a) Send one zip file called YourName4735.zip or Yourame5735.zip. By midnight
Dec 4.

i. That should be a compressed version of a single folder.
ii. In that folder should be a collection of Matlab files
iii. In that folder should be a *README file explaining how to use the Matlab

files. It should be VERY EASY to use the files for simple demonstrations
iv. In that folder should be a file called REPORT.pdf. It could be made from

WORD, LateX or scanned handwork, or any mixture of those. It should
explain what you have done, how, and give sample output. This is the
main demonstration of your effort. As appendices this should include your
documented matlab files.

(b) On Dec 4, you will have 5 minutes to demonstrate animations of your simulations
on your own laptop. Sign up for time on the course www page.

November 27, 2012 ME 4735/5735 Homework Problems 29



No more problems to come (�
:

.
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