Your name:

Cornell TAM/ENGRD 2030

Final Exam

May 12, 2011

No calculators, books or notes allowed. 5 Problems, 150 minutes (no extra time)

How to get the highest score?

Please do these things:

- Draw **Free body diagrams** whenever force, moment, linear momentum, or angular momentum balance are used.
- Use correct vector notation.
- A+ Be (I) neat, (II) clear and (III) well organized.
- TIDILY REDUCE and box in your answers (Don't leave simplifyable algebraic expressions).
- >> Make appropriate Matlab code clear and correct. You can use shortcut notation like " $T_7 = 18$ " instead of, say, "T (7) = 18". Small syntax errors will have small penalties.
- $\uparrow \qquad \text{Clearly define any needed dimensions } (\ell, h, d, ...), \text{ coordinates } (x, y, r, \theta ...), \text{ variables } (v, m, t, ...), \\ \text{base vectors } (\hat{i}, \hat{j}, \hat{e}_r, \hat{e}_{\theta}, \hat{\lambda}, \hat{n} ...) \text{ and signs } (\pm) \text{ with sketches, equations or words.}$
- \rightarrow Justify your results so a grader can distinguish an informed answer from a guess.
- If a problem seems *poonly dlefined*, clearly state any reasonable assumptions (that do not oversimplify the problem).
- \approx Work for **partial credit** (from 60–100%, depending on the problem)
 - Put your answer is in terms of well defined variables even if you have not substituted in the numerical values.
 - Reduce the problem to a clearly defined set of equations to solve.
 - Provide Matlab code which would generate the desired answer (and explain the nature of the output).
- **Extra sheets.** Put your name on each extra sheet, fold it in, and refer to it at the relevant problem. Note the last page is **blank** for your use. Ask for more extra paper if you need it.

Problem 13: _	/25
Problem 14: _	/25
Problem 15:	/25
Problem 16: _	/25
Problem 17: _	/25

13) Making all the usual assumptions about masses and pulleys, find the acceleration of point C in terms of F and m. Neglect gravity.

14) A disk rolls down a ramp without slipping. How big does μ have to be in order to prevent slip? (That is, if μ is too small, slip would not successfully be prevented). Answer in terms of some or all of θ , g, R, I^G and m.

15) A mass *m* hangs from a spring with constant *k* and rest length $L_0 = 0$ (the spring is a so-called zero-rest-length spring). The mass is released from rest at the position $\vec{r}_0 = 0\hat{i} + y_0\hat{j}$.

a) Find the position of the mass at time t in terms of some or all of k, m, g and y_0 .

b) Draw the trajectory (the path that the mass moves on).

c) In words, describe the shape of the trajectory.

16) Write MATLAB commands to make a plot of $x_B(t)$. Pick any convenient non-zero values (in consistent units) for any variables or constants.

17) A motor at O turns a rigid rod OA (mass M, moment of inertia I^G) at constant angular rate $\dot{\phi}$. A negligible-mass rod with length r is hinged at A and has mass m at its end. Neglect gravity.

a) Is angular momentum of the system OAB about O constant or not? (Explain your answer.)

b) Consider the special case that $\phi = 0$ and $\dot{\phi} = 0$ (for all time). Find $\ddot{\theta}$ in terms of as many of these terms are needed: θ , $\dot{\theta}$, L, L_G , r, M, m and I^G .

c) Now consider non-zero $\dot{\phi}$. Find $\ddot{\theta}$ in terms of some or all of ϕ , $\dot{\phi}$, θ , $\dot{\theta}$, L, L_G , r, M, m and I^G .

